Upward resetting of the vascular sympathetic baroreflex in middle-aged male runners

Denis J. Wakeham, Rachel N. Lord, Jack S. Talbot, Freya M. Lodge, Bryony A. Curry, Tony G. Dawkins, Lydia L. Simpson, Rob E. Shave, Christopher J.A. Pugh, Jonathan P. Moore*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

This study focused on the influence of habitual endurance exercise training (i.e., committed runner or nonrunner) on the regulation of muscle sympathetic nerve activity (MSNA) and arterial pressure in middle-aged (50 to 63 yr, n = 23) and younger (19 to 30 yr; n = 23) normotensive men. Hemodynamic and neurophysiological assessments were performed at rest. Indices of vascular sympathetic baroreflex function were determined from the relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired comparisons were performed within each age category. Mean arterial pressure and basal MSNA bursts/min were not different between age-matched runners and nonrunners. However, MSNA bursts/100 heartbeats, an index of baroreflex regulation of MSNA (vascular sympathetic baroreflex operating point), was higher for middle-aged runners (P = 0.006), whereas this was not different between young runners and nonrunners. The slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different between groups in either age category. Aortic pulse wave velocity was lower for runners of both age categories (P < 0.03), although carotid β-stiffness was lower only for middle-aged runners (P = 0.04). For runners of both age categories, stroke volume was larger, whereas heart rate was lower (both P < 0.01). In conclusion, we suggest that neural remodeling and upward setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations after many years committed to endurance exercise training, presumably to maintain arterial blood pressure stability. NEW & NOTEWORTHY Exercise training reduces muscle sympathetic burst activity in disease; this is often extrapolated to infer a similar effect in health. We demonstrate that burst frequency of middle-aged and younger men committed to endurance training is not different compared with age-matched casual exercisers. Notably, well-trained, middle-aged runners display similar arterial pressure but higher sympathetic burst occurrence than untrained peers. We suggest that homeostatic plasticity and upward setting of the vascular sympathetic baroreflex maintains arterial pressure stability following years of training.

Original languageEnglish
Pages (from-to)H181-H189
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume317
Issue number1
DOIs
Publication statusPublished - 30 Jun 2019

Keywords

  • Aging
  • Baroreflex
  • Blood pressure
  • Exercise physiology
  • Sympathetic nervous system

Cite this