Abstract
The wheat gluten proteins correspond to the major storage proteins that are deposited in the starchy endosperm cells of the developing grain. These form a continuous proteinaceous matrix in the cells of the mature dry grain and are brought together to form a continuous viscoelastic network when flour is mixed with water to form dough. These viscoelastic properties underpin the utilization of wheat to give bread and other processed foods. One group of gluten proteins, the HMM subunits of glutenin, is particularly important in conferring high levels of elasticity (i.e. dough strength). These proteins are present in HMM polymers that are stabilized by disulphide bonds and are considered to form the 'elastic backbone' of gluten. However, the glutamine-rich repetitive sequences that comprise the central parts of the HMM subunits also form extensive arrays of interchain hydrogen bonds that may contribute to the elastic properties via a 'loop and train' mechanism. Genetic engineering can be used to manipulate the amount and composition of the HMM subunits, leading to either increased dough strength or to more drastic changes in gluten structure and properties.
Original language | English |
---|---|
Pages (from-to) | 133-142 |
Number of pages | 10 |
Journal | Philosophical Transactions of the Royal Society B: Biological Sciences |
Volume | 357 |
Issue number | 1418 |
DOIs | |
Publication status | Published - 28 Feb 2002 |
Externally published | Yes |
Keywords
- Gluten
- HMM subunits
- Protein elasticity
- Transgenic plants
- Wheat