TY - JOUR
T1 - The effect of age and sex on peak oxygen uptake during upper and lower body exercise
T2 - A systematic review
AU - Price, M. J.
AU - Smith, P. M.
AU - Bottoms, L. M.
AU - Hill, M. W.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/4/13
Y1 - 2024/4/13
N2 - Background: Large scale population norms for peak oxygen uptake (VO2peak) during cycle ergometry (CE) have been published for men and women across a wide range of ages. Although upper body functional capacity has an important role in activities of daily living far less is known regarding the effect of age and sex on upper body functional capacity (i.e. arm crank ergometry; ACE). The aim of this review was to determine the effect of age and sex on VO2peak obtained during ACE and CE in the same participants. Method: The review was pre-registered with PROSEPERO (Ref: CRD42022349566). A database search using Academic Search Complete including CINAHL complete, CINHAL Ultimate, Medline, PubMed, SPORTDiscus was undertaken. Results: The initial search yielded 460 articles which was reduced to 243 articles following removal of duplicates. Twenty-five articles were subsequently excluded based on title resulting in 218 articles considered for retrieval. Following review of the abstracts, 78 further articles were excluded leaving 140 to be assessed for eligibility. Eighty-five articles were subsequently excluded, resulting in 55 articles being included. The decrease in VO2peak with age during CE was consistent with previous studies. Decreases in VO2peak during ACE with age, although paralleling those of CE, appeared to be of greater functional importance. When changes in VO2peak were considered below the age of 50 years little change was observed for absolute VO2peak during ACE and CE. In contrast, relative VO2peak demonstrated decreases in VO2peak for both ACE and CE likely reflecting increases in body mass and body fat percentage with age. After 50 years of age absolute and relative VO2peak demonstrated more similar and subtle responses. Heterogeneity across studies for both absolute and relative VO2peak between ACE and CE was large. Although strict inclusion criteria were applied, the inter-individual variation in sample populations was likely the main source of heterogeneity. There was a considerable lack data sets available for ages above 40 years of age. Conclusions: These responses suggest that upper body VO2peak decreases in line with that of the lower body but, due to the lower peak values achieved during ACE, decreases in VO2peak may have more profound functional impact compared to that for the lower body. Using absolute and relative measures of VO2peak results in different age-related profiles when considered below 50 years of age. To further our understanding of whole body ageing more data is required for participants in mid and later life. The association between VO2peak and underlying physiological factors with age needs to be studied further, particularly in conjunction with activities of daily living and independent living.
AB - Background: Large scale population norms for peak oxygen uptake (VO2peak) during cycle ergometry (CE) have been published for men and women across a wide range of ages. Although upper body functional capacity has an important role in activities of daily living far less is known regarding the effect of age and sex on upper body functional capacity (i.e. arm crank ergometry; ACE). The aim of this review was to determine the effect of age and sex on VO2peak obtained during ACE and CE in the same participants. Method: The review was pre-registered with PROSEPERO (Ref: CRD42022349566). A database search using Academic Search Complete including CINAHL complete, CINHAL Ultimate, Medline, PubMed, SPORTDiscus was undertaken. Results: The initial search yielded 460 articles which was reduced to 243 articles following removal of duplicates. Twenty-five articles were subsequently excluded based on title resulting in 218 articles considered for retrieval. Following review of the abstracts, 78 further articles were excluded leaving 140 to be assessed for eligibility. Eighty-five articles were subsequently excluded, resulting in 55 articles being included. The decrease in VO2peak with age during CE was consistent with previous studies. Decreases in VO2peak during ACE with age, although paralleling those of CE, appeared to be of greater functional importance. When changes in VO2peak were considered below the age of 50 years little change was observed for absolute VO2peak during ACE and CE. In contrast, relative VO2peak demonstrated decreases in VO2peak for both ACE and CE likely reflecting increases in body mass and body fat percentage with age. After 50 years of age absolute and relative VO2peak demonstrated more similar and subtle responses. Heterogeneity across studies for both absolute and relative VO2peak between ACE and CE was large. Although strict inclusion criteria were applied, the inter-individual variation in sample populations was likely the main source of heterogeneity. There was a considerable lack data sets available for ages above 40 years of age. Conclusions: These responses suggest that upper body VO2peak decreases in line with that of the lower body but, due to the lower peak values achieved during ACE, decreases in VO2peak may have more profound functional impact compared to that for the lower body. Using absolute and relative measures of VO2peak results in different age-related profiles when considered below 50 years of age. To further our understanding of whole body ageing more data is required for participants in mid and later life. The association between VO2peak and underlying physiological factors with age needs to be studied further, particularly in conjunction with activities of daily living and independent living.
KW - Ageing
KW - Arm crank ergometry
KW - Cycle ergometry
KW - Female
KW - Male
KW - Maximal oxygen uptake
UR - http://www.scopus.com/inward/record.url?scp=85190123879&partnerID=8YFLogxK
U2 - 10.1016/j.exger.2024.112427
DO - 10.1016/j.exger.2024.112427
M3 - Review article
AN - SCOPUS:85190123879
SN - 0531-5565
VL - 190
JO - Experimental Gerontology
JF - Experimental Gerontology
M1 - 112427
ER -