Structural studies of glutenin subunits 1Dy10 and 1Dy12 by matrix-assisted laser desorption/ionisation mass spectrometry and high-performance liquid chromatography/electrospray ionisation mass spectrometry

Vincenzo Cunsolo, Salvatore Foti, Rosaria Saletti*, Simon Gilbert, Arthur S. Tatham, Peter R. Shewry

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

Structural studies of the high molecular weight (HMW) glutenin subunits 1Dy10 and 1Dy12 of bread wheat were conducted using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS). For both proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 500-540 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of both proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture and analysis of the digests was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimising the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in the coverage of the whole protein sequences except for two short fragments (T1 and T8), which are identical in the two homologous subunits, and for an additional dipeptide (T14) in subunit 1Dy12, which were not detected. It also demonstrated that, in contrast to the gene-derived data, the sequence of subunit 1Dy12 does not include the dipeptide Gly-Gln between residues Gln454 and Pro455, and that the lower mass components present in both fractions correspond to the same sequences lacking short peptides that are probably lost from the protein N- or C-termini. Finally, the results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of the two subunits, and demonstrate that mass spectrometric mapping is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.

Original languageEnglish
Pages (from-to)442-454
Number of pages13
JournalRapid Communications in Mass Spectrometry
Volume17
Issue number5
DOIs
Publication statusPublished - 2003
Externally publishedYes

Cite this