Abstract
Multipath routing in mobile ad-hoc networks allows the establishment of multiple paths for routing between a source-destination pair. It exploits the resource redundancy and diversity in the underlying network to provide benefits such as fault tolerance, load balancing, bandwidth aggregation and the improvement in quality-of-service metrics such as delay. Previous work shows that on-demand multipath routing schemes achieve better performance under certain scenarios with respect to a number of key performance metrics when compared with traditional single-path routing mechanisms. A multipath routing scheme, referred to as shortest multipath source (SMS) routing based on dynamic source routing (DSR) is proposed here. The mechanism has two novel aspects compared with other on-demand multipath routing schemes: it achieves shorter multiple partial-disjoint paths and allows more rapid recovery from route breaks. The performance differentials are investigated using NS-2 under conditions of varying mobility, offered load and network size. Results reveal that SMS provides a better solution than existing source-based approaches in a truly mobile ad-hoc environment.
Original language | English |
---|---|
Pages (from-to) | 700-713 |
Number of pages | 14 |
Journal | IET Communications |
Volume | 3 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2009 |
Externally published | Yes |