Multi-band multi-resolution fully convolutional neural networks for singing voice separation

Emad M. Grais, Fei Zhao, Mark D. Plumbley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)
2 Downloads (Pure)

Abstract

Deep neural networks with convolutional layers usually process the entire spectrogram of an audio signal with the same time-frequency resolutions, number of filters, and dimensionality reduction scale. According to the constant-Q transform, good features can be extracted from audio signals if the low frequency bands are processed with high frequency resolution filters and the high frequency bands with high time resolution filters. In the spectrogram of a mixture of singing voices and music signals, there is usually more information about the voice in the low frequency bands than the high frequency bands. These raise the need for processing each part of the spectrogram differently. In this paper, we propose a multi-band multi-resolution fully convolutional neural network (MBR-FCN) for singing voice separation. The MBR-FCN processes the frequency bands that have more information about the target signals with more filters and smaller dimensionality reduction scale than the bands with less information. Furthermore, the MBR-FCN processes the low frequency bands with high frequency resolution filters and the high frequency bands with high time resolution filters. Our experimental results show that the proposed MBR-FCN with very few parameters achieves better singing voice separation performance than other deep neural networks.

Original languageEnglish
Title of host publication28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
PublisherEuropean Signal Processing Conference, EUSIPCO
Pages261-265
Number of pages5
ISBN (Electronic)9789082797053
DOIs
Publication statusPublished - 8 Dec 2020
Event28th European Signal Processing Conference, EUSIPCO 2020 - Amsterdam, Netherlands
Duration: 24 Aug 202028 Aug 2020

Publication series

NameEuropean Signal Processing Conference
Volume2021-January
ISSN (Print)2219-5491

Conference

Conference28th European Signal Processing Conference, EUSIPCO 2020
Country/TerritoryNetherlands
CityAmsterdam
Period24/08/2028/08/20

Keywords

  • Convolutional neural networks
  • Deep learning
  • Feature extraction
  • Singing voice separation
  • Single channel audio source separation

Cite this