Mining textual data from primary healthcare records: Automatic identification of patient phenotype cohorts

Shang Ming Zhou*, Muhammad A. Rahman, Mark Atkinson, Sinead Brophy

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Due to advances of the omics technologies, rich sources of clinical, biomedical, contextual, and environmental data about each patient have been available in medical and health sciences. However, an enormous amount of electronic health records is actually generated as textual data, such as descriptive terms/concepts. No doubt, efficiently harnessing these valuable textual data would allow doctors and nurses to identify the most appropriate treatments and the predicted outcomes for a given patient in real time. We used textual data to identify patient phenotypes from UK primary care records that were managed by Read codes (a clinical classification system). The fine granularity level of Read codes leads to a huge number of clinical terms to be handled. Unfortunately, traditional medical statistics methods have struggled to process this sort of data effectively. In this paper, we described how the problem of patient phenotype identification can be transformed into document classification task, a text mining scheme is addressed to integrate feature ranking methods and genetic algorithm to identify the most parsimonious subset of features that still holds the capacity of characterizing the distinction of patient phenotypes. The experimental results have demonstrated that compact feature sets with 2 or 3 important terms describing clinical events were effectively identified from 16852 Read codes while their classification accuracy remained high level of agreements with specialists from secondary care in classifying testing samples.

Original languageEnglish
Title of host publicationProceedings of the International Joint Conference on Neural Networks
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3621-3627
Number of pages7
ISBN (Electronic)9781479914845
DOIs
Publication statusPublished - 3 Sept 2014
Externally publishedYes
Event2014 International Joint Conference on Neural Networks, IJCNN 2014 - Beijing, China
Duration: 6 Jul 201411 Jul 2014

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2014 International Joint Conference on Neural Networks, IJCNN 2014
Country/TerritoryChina
CityBeijing
Period6/07/1411/07/14

Cite this