TY - JOUR
T1 - Intelligent optimization for modelling superhydrophobic ceramic membrane oil flux and oil-water separation efficiency
T2 - Evidence from wastewater treatment and experimental laboratory
AU - Usman, Jamilu
AU - Salami, Babatunde A.
AU - Gbadamosi, Afeez
AU - Adamu, Haruna
AU - Usman, A. G.
AU - Benaafi, Mohammed
AU - Abba, S. I.
AU - Dzarfan Othman, Mohd Hafiz
AU - Aljundi, Isam H.
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/5/5
Y1 - 2023/5/5
N2 - Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models’ performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
AB - Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models’ performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
KW - Ceramic membrane
KW - Machine learning
KW - Oil flux
KW - Oil-water separation
KW - Oily wastewater
UR - http://www.scopus.com/inward/record.url?scp=85156159245&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2023.138726
DO - 10.1016/j.chemosphere.2023.138726
M3 - Article
C2 - 37116721
AN - SCOPUS:85156159245
SN - 0045-6535
VL - 331
JO - Chemosphere
JF - Chemosphere
M1 - 138726
ER -