TY - JOUR
T1 - Indirect measures of substrate utilisation following exercise-induced muscle damage
AU - Hughes, Jonathan
AU - Chapman, Phillip
AU - Brown, Stephen
AU - Johnson, Nathan
AU - Stannard, Stephen
PY - 2013/1/11
Y1 - 2013/1/11
N2 - This study investigated whether exercise-induced muscle damage (EIMD) resulted in changes to whole-body substrate utilisation during exercise performed during the subsequent 48 hours. Eight males (31±6 years) performed 30 minutes of bench-stepping exercise. One leg performed eccentric contractions (Ecc) by lowering the body whilst the control leg performed concentric contractions (Con) by raising the body. On the two days following bench-stepping exercise participants performed measures of muscle function on an isokinetic dynamometer and undertook a bout of one leg cycling exercise, at two differing workloads, with the first workload (WL1) at 1.5±0.25 W/kg and the second workload (WL2) at 1.8±0.25 W/kg with each leg. Expired respiratory gases were collected during cycling to estimate whole body substrate utilisation. There were significant decrements in measures of muscular performance (isometric force, concentric and eccentric torque) and increased perception of soreness in Ecc compared with Con (P < 0.05). The effect of the Ecc treatment on substrate utilisation during one-legged cycling revealed a significant trial×time interaction with higher rates of CHO oxidation in the Ecc condition compared with Con that were further increased 48 hours later (P = 0.02). A significant treatment×time×effort interaction (P < 0.01) indicated the effect of the treatment altered as workload increased with higher rates of CHO oxidation occurring in WL2. This is consistent with greater reliance upon muscle glycogen. Suggesting that in EIMD, reductions in strength and increased feelings of soreness can be associated with greater reliance upon intramuscular CHO oxidation, than lipid, during subsequent concentric work.
AB - This study investigated whether exercise-induced muscle damage (EIMD) resulted in changes to whole-body substrate utilisation during exercise performed during the subsequent 48 hours. Eight males (31±6 years) performed 30 minutes of bench-stepping exercise. One leg performed eccentric contractions (Ecc) by lowering the body whilst the control leg performed concentric contractions (Con) by raising the body. On the two days following bench-stepping exercise participants performed measures of muscle function on an isokinetic dynamometer and undertook a bout of one leg cycling exercise, at two differing workloads, with the first workload (WL1) at 1.5±0.25 W/kg and the second workload (WL2) at 1.8±0.25 W/kg with each leg. Expired respiratory gases were collected during cycling to estimate whole body substrate utilisation. There were significant decrements in measures of muscular performance (isometric force, concentric and eccentric torque) and increased perception of soreness in Ecc compared with Con (P < 0.05). The effect of the Ecc treatment on substrate utilisation during one-legged cycling revealed a significant trial×time interaction with higher rates of CHO oxidation in the Ecc condition compared with Con that were further increased 48 hours later (P = 0.02). A significant treatment×time×effort interaction (P < 0.01) indicated the effect of the treatment altered as workload increased with higher rates of CHO oxidation occurring in WL2. This is consistent with greater reliance upon muscle glycogen. Suggesting that in EIMD, reductions in strength and increased feelings of soreness can be associated with greater reliance upon intramuscular CHO oxidation, than lipid, during subsequent concentric work.
KW - Eccentric exercise
KW - metabolism
KW - respiratory exchange ratio
UR - http://www.scopus.com/inward/record.url?scp=84887988870&partnerID=8YFLogxK
U2 - 10.1080/17461391.2012.755570
DO - 10.1080/17461391.2012.755570
M3 - Article
C2 - 24050468
AN - SCOPUS:84887988870
SN - 1746-1391
VL - 13
SP - 509
EP - 517
JO - European Journal of Sport Science
JF - European Journal of Sport Science
IS - 5
ER -