Genome analysis, metabolic potential, and predatory capabilities of Herpetosiphon llansteffanense sp. nov

Paul G. Livingstone, Russell M. Morphew, Alan R. Cookson, David E. Whitworth*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Herpetosiphon spp. are ubiquitous, chemoheterotrophic, filamentous gliding bacteria with the ability to prey on other microbes through a "wolf pack" mechanism. The genus currently comprises four known species (H. aurantiacus, H. geysericola, H. giganteus, and H. gulosus), which produce antimicrobial secondary metabolites such as siphonazole. As part of a study isolating myxobacterial wolf pack predators, we serendipitously isolated a novel environmental strain (CA052B) from the edge of a stream at Llansteffan, United Kingdom, which was identified as a member of the Herpetosiphon genus. A lawn culture method was utilized to analyze the predatory activity of CA052B against 10 prey organisms of clinical relevance. CA052B was found to prey on Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus faecalis, Bacillus subtilis, and Candida albicans. Purified CA052B outer membrane vesicles also exhibited killing activity against the prey organisms when tested by flow cytometry. 16S rRNA sequencing of CA052B showed 98 to 99% identity with other Herpetosiphon species members. Comparing the genome of CA052B with the publicly available genomes of H. aurantiacus and H. geysericola revealed average nucleotide identities of only 84% and 91%, respectively, whereas the genome-to-genome distance calculation showed sequence identities of 28.2% and 46.6%, respectively. Biochemical characterization also revealed distinctions between CA052B and both H. gulosus and H. giganteus. Thus, strain CA052BT (= DSM 107618T = NBRC 113495T) is proposed to be the type strain of a novel species, Herpetosiphon llansteffanense sp. nov. The genome sequence of CA052B also revealed diverse secondary metabolite biosynthetic clusters, encouraging further exploration of its antibiotic production potential.

Original languageEnglish
Article numbere01040-18
JournalApplied and Environmental Microbiology
Volume84
Issue number22
DOIs
Publication statusPublished - 30 Oct 2018
Externally publishedYes

Keywords

  • Antimicrobials
  • Biological control
  • Comparative genomics
  • Myxobacteria
  • Predator
  • Prey

Cite this