Gel point and fractal microstructure of incipient blood clots are significant new markers of hemostasis for healthy and anticoagulated blood

Phillip A. Evans, Karl Hawkins, Roger H.K. Morris, Naresh Thirumalai, Roger Munro, Lisa Wakeman, Matthew J. Lawrence, P. Rhodri Williams

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)

Abstract

Here we report the first application of a fractal analysis of the viscoelastic properties of incipient blood clots. We sought to ascertain whether the incipient clot's fractal dimension, Df, could be used as a functional biomarker of hemostasis. The incipient clot is formed at the gel point (GP) of coagulating blood, the GP demarcating a functional change from viscoelastic liquid to a viscoelastic solid. Incipient clots formed in whole healthy blood show a clearly defined value of Df within a narrow range that represents an index of clotting in health, where Df = 1.74 (± 0.07). A significant relationship is found between the incipient clot formation time, TGP, and the activated partial thromboplastin time, whereas the association of Df with the microstructural characteristics of the incipient clot is supported by its significant correlation with fibrinogen. Our study reveals that unfractionated heparin not only prolongs the onset of clot formation but has a significant effect on its fractal microstructure. A progressive increase in unfractionated heparin concentration results in a linear decrease in Df and a corresponding prolongation in TGP. The results represent a new, quantitative measure of clot quality derived from measurements on whole blood samples.

Original languageEnglish
Pages (from-to)3341-3346
Number of pages6
JournalBlood
Volume116
Issue number17
DOIs
Publication statusPublished - 21 Jun 2010

Cite this