TY - JOUR
T1 - Exploring the potential of aqueous extracts of Artemisia annua ANAMED (A3) for developing new anti-malarial agents
T2 - In vivo and silico computational approach
AU - Apeh, Victor Onukwube
AU - Okafor, Kennedy Chinedu
AU - Chukwuma, Ifeoma Felicia
AU - Uzoeto, Henrietta Onyinye
AU - Chinebu, Titus Ifeanyi
AU - Nworah, Florence Nkechi
AU - Edache, Emmanuel Israel
AU - Okafor, Ijeoma Peace
AU - Anthony, Okoronkwo Chukwunenye
PY - 2023/12/22
Y1 - 2023/12/22
N2 - AbstractThe emergence of resistance to current antimalarial drugs poses a significant challenge in the fight against malaria. This study aimed to investigate the in vivo antiplasmodial potential of the aqueous extract of fresh and dried leaves of A3 in Plasmodium berghei‐infected (P. berghei) mice. A 4‐day suppressive test was conducted, with infected BALB/c mice receiving artesunate and A3 extracts. The results showed that the tested doses of A3 attenuated the elevation of parasitemia induced by P. berghei, particularly at the dose of 400 mg/kg, and improved hematological indices. Computational techniques, including molecular docking, binding free energy calculations, and ADMET predictions, identified several bioactive compounds in A3 with promising inhibitory potential against lysyl‐tRNA synthetases and Dihydrofolate reductase (DHFR), the crucial enzymes targeted by antimalarial drugs. In this paper, Friedelin, Bauerenol, Epifriedelanol, Alpha‐Amyrenone, Stigmasterol, and beta‐Amyrin acetate were top‐ranked, having docking scores from −10.6 to −9.9 kcal/mol, compared with the −9.4 and −7.1 kcal/mol demonstrated by artesunate and chloroquine, respectively, as standard ligands. Also, it was shown that docking score from the Lysyl‐tRNA protein target (4YCV) ranged from −9.5 to −7.8 kcal/mol in comparison to artesunate (8.1 kcal/mol) and chloroquine (5.6 kcal/mol). The results suggest that the identified compounds in A3 could serve as potential candidates for the development of new anti‐malarial agents.
AB - AbstractThe emergence of resistance to current antimalarial drugs poses a significant challenge in the fight against malaria. This study aimed to investigate the in vivo antiplasmodial potential of the aqueous extract of fresh and dried leaves of A3 in Plasmodium berghei‐infected (P. berghei) mice. A 4‐day suppressive test was conducted, with infected BALB/c mice receiving artesunate and A3 extracts. The results showed that the tested doses of A3 attenuated the elevation of parasitemia induced by P. berghei, particularly at the dose of 400 mg/kg, and improved hematological indices. Computational techniques, including molecular docking, binding free energy calculations, and ADMET predictions, identified several bioactive compounds in A3 with promising inhibitory potential against lysyl‐tRNA synthetases and Dihydrofolate reductase (DHFR), the crucial enzymes targeted by antimalarial drugs. In this paper, Friedelin, Bauerenol, Epifriedelanol, Alpha‐Amyrenone, Stigmasterol, and beta‐Amyrin acetate were top‐ranked, having docking scores from −10.6 to −9.9 kcal/mol, compared with the −9.4 and −7.1 kcal/mol demonstrated by artesunate and chloroquine, respectively, as standard ligands. Also, it was shown that docking score from the Lysyl‐tRNA protein target (4YCV) ranged from −9.5 to −7.8 kcal/mol in comparison to artesunate (8.1 kcal/mol) and chloroquine (5.6 kcal/mol). The results suggest that the identified compounds in A3 could serve as potential candidates for the development of new anti‐malarial agents.
U2 - 10.1002/eng2.12831
DO - 10.1002/eng2.12831
M3 - Article
SN - 2577-8196
VL - 6
JO - Engineering Reports
JF - Engineering Reports
IS - 9
ER -