Enhancing Fairness, Justice and Accuracy of Hybrid Human-AI Decisions by Shifting Epistemological Stances

Peter Daish*, Matt Roach, Alan Dix

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

From applications in automating credit to aiding judges in presiding over cases of recidivism, deep-learning powered AI systems are becoming embedded in high-stakes decision-making processes as either primary decision-makers or supportive assistants to humans in a hybrid decision-making context, with the aim of improving the quality of decisions. However, the criteria currently used to assess a system’s ability to improve hybrid decisions is driven by a utilitarian desire to optimise accuracy through a phenomenon known as ‘complementary performance’. This desire puts the design of hybrid decision-making at odds with critical subjective concepts that affect the perception and acceptance of decisions, such as fairness. Fairness as a subjective notion often has a competitive relationship with accuracy and as such, driving complementary behaviour with a utilitarian belief risks driving unfairness in decisions. It is our position that shifting epistemological stances taken in the research and design of human-AI environments is necessary to incorporate the relationship between fairness and accuracy into the notion of ‘complementary behaviour’, in order to observe ‘enhanced’ hybrid human-AI decisions.

Original languageEnglish
Title of host publicationMachine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2023, Revised Selected Papers
EditorsRosa Meo, Fabrizio Silvestri
PublisherSpringer Science and Business Media Deutschland GmbH
Pages323-331
Number of pages9
ISBN (Print)9783031746260
DOIs
Publication statusPublished - 1 Jan 2025
EventJoint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2023 - Turin, Italy
Duration: 18 Sept 202322 Sept 2023

Publication series

NameCommunications in Computer and Information Science
Volume2134 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

ConferenceJoint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2023
Country/TerritoryItaly
CityTurin
Period18/09/2322/09/23

Keywords

  • Epistemologically Driven Hybrid Human-AI Environment Design
  • Human-AI Fairness
  • Human-AI interaction
  • Justice and Accuracy

Cite this