TY - JOUR
T1 - Efficient Detailed Routing for FPGA Back-End Flow Using Reinforcement Learning
AU - Baig, Imran
AU - Farooq, Umer
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/7/18
Y1 - 2022/7/18
N2 - Over the past few years, the computation capability of field-programmable gate arrays (FPGAs) has increased tremendously. This has led to the increase in the complexity of the designs implemented on FPGAs and to the time taken by the FPGA back-end flow. The FPGA back-end flow comprises of many steps, and routing is one of the most critical steps among them. Routing normally constitutes more than 50% of the total time taken by the back-end flow and an optimization at this step can lead to overall optimization of the back-end flow. In this work, we propose enhancements to the routing step by incorporating a reinforcement learning (RL)-based framework. In the proposed RL-based framework, we use the (Formula presented.) -greedy approach and customized reward functions to speed up the routing step while maintaining similar or better quality of results (QoR) as compared to the conventional negotiation-based congestion-driven routing solution. For experimentation, we use two sets of widely deployed, large heterogeneous benchmarks. Our results show that, for the RL-based framework, the (Formula presented.) -greedy greedy approach combined with a modified reward function gives better results as compared to purely greedy or exploratory approaches. Moreover, the incorporation of the proposed reward function in the RL-based framework and its comparison with a conventional routing algorithm shows that the proposed enhancement requires less routing time while giving similar or better QoR. On average, a speedup of 35% is recorded for the proposed routing enhancement as compared to negotiation-based congestion-driven routing solutions. Finally, the speedup of the routing step leads to an overall reduction in the execution time of the back-end flow of 25%.
AB - Over the past few years, the computation capability of field-programmable gate arrays (FPGAs) has increased tremendously. This has led to the increase in the complexity of the designs implemented on FPGAs and to the time taken by the FPGA back-end flow. The FPGA back-end flow comprises of many steps, and routing is one of the most critical steps among them. Routing normally constitutes more than 50% of the total time taken by the back-end flow and an optimization at this step can lead to overall optimization of the back-end flow. In this work, we propose enhancements to the routing step by incorporating a reinforcement learning (RL)-based framework. In the proposed RL-based framework, we use the (Formula presented.) -greedy approach and customized reward functions to speed up the routing step while maintaining similar or better quality of results (QoR) as compared to the conventional negotiation-based congestion-driven routing solution. For experimentation, we use two sets of widely deployed, large heterogeneous benchmarks. Our results show that, for the RL-based framework, the (Formula presented.) -greedy greedy approach combined with a modified reward function gives better results as compared to purely greedy or exploratory approaches. Moreover, the incorporation of the proposed reward function in the RL-based framework and its comparison with a conventional routing algorithm shows that the proposed enhancement requires less routing time while giving similar or better QoR. On average, a speedup of 35% is recorded for the proposed routing enhancement as compared to negotiation-based congestion-driven routing solutions. Finally, the speedup of the routing step leads to an overall reduction in the execution time of the back-end flow of 25%.
KW - FPGA back-end flow
KW - reinforcement learning
KW - routing
UR - http://www.scopus.com/inward/record.url?scp=85136347059&partnerID=8YFLogxK
U2 - 10.3390/electronics11142240
DO - 10.3390/electronics11142240
M3 - Article
AN - SCOPUS:85136347059
SN - 2079-9292
VL - 11
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 14
M1 - 2240
ER -