TY - JOUR
T1 - Deep Neural Network Based Real-Time Intrusion Detection System
AU - Thirimanne, Sharuka Promodya
AU - Jayawardana, Lasitha
AU - Yasakethu, Lasith
AU - Liyanaarachchi, Pushpika
AU - Hewage, Chaminda
N1 - Publisher Copyright:
© The Author(s) 2022.
PY - 2022/1/29
Y1 - 2022/1/29
N2 - In recent years, due to the rapid growth in network technology, numerous types of intrusions have been uncovered that differ from the existing ones, and the conventional firewalls with specific rule sets and policies are incapable of identifying those intrusions in real-time. Therefore, that demands the requirement of a real-time intrusion detection system (RT-IDS). The ultimate purpose of this research is to construct an RT-IDS capable of identifying intrusions by analysing the inbound and outbound network data in real-time. The proposed system consists of a deep neural network (DNN) trained using 28 features of the NSL-KDD dataset. In addition, it contains the machine learning (ML) pipeline with sequential components for categorical data encoding and feature scaling, which is used before transmitting the real-time data to the trained DNN model to make predictions. Moreover, a real-time feature extractor, which is a C++ program that sniffs data from the real-time network traffic and derives relevant data related to the features of the NSL-KDD dataset using the sniffed data, is deployed between the gateway router and the local area network (LAN). Together with the trained DNN model, the ML pipeline is hosted in a server that can be accessed via a representational state transfer application programming interface (REST API). The DNN has revealed outstanding testing performance results achieving 81%, 96%, 70% and 81% for accuracy, precision, recall and f1-score accordingly. This research comprises a comprehensive technical explanation concerning the implementation and functionality of the complete system. Moreover, leveraging the extensive explanations provided in this paper, advanced IDSs capable of identifying modern intrusions can be constructed.
AB - In recent years, due to the rapid growth in network technology, numerous types of intrusions have been uncovered that differ from the existing ones, and the conventional firewalls with specific rule sets and policies are incapable of identifying those intrusions in real-time. Therefore, that demands the requirement of a real-time intrusion detection system (RT-IDS). The ultimate purpose of this research is to construct an RT-IDS capable of identifying intrusions by analysing the inbound and outbound network data in real-time. The proposed system consists of a deep neural network (DNN) trained using 28 features of the NSL-KDD dataset. In addition, it contains the machine learning (ML) pipeline with sequential components for categorical data encoding and feature scaling, which is used before transmitting the real-time data to the trained DNN model to make predictions. Moreover, a real-time feature extractor, which is a C++ program that sniffs data from the real-time network traffic and derives relevant data related to the features of the NSL-KDD dataset using the sniffed data, is deployed between the gateway router and the local area network (LAN). Together with the trained DNN model, the ML pipeline is hosted in a server that can be accessed via a representational state transfer application programming interface (REST API). The DNN has revealed outstanding testing performance results achieving 81%, 96%, 70% and 81% for accuracy, precision, recall and f1-score accordingly. This research comprises a comprehensive technical explanation concerning the implementation and functionality of the complete system. Moreover, leveraging the extensive explanations provided in this paper, advanced IDSs capable of identifying modern intrusions can be constructed.
KW - Deep neural network
KW - Machine learning
KW - Pipelines
KW - Real-time intrusion detection system
UR - http://www.scopus.com/inward/record.url?scp=105000288739&partnerID=8YFLogxK
U2 - 10.1007/s42979-022-01031-1
DO - 10.1007/s42979-022-01031-1
M3 - Article
AN - SCOPUS:105000288739
SN - 2662-995X
VL - 3
JO - SN Computer Science
JF - SN Computer Science
IS - 2
M1 - 145
ER -