Contributions and limitations of using machine learning to predict noise-induced hearing loss

Feifan Chen, Zuwei Cao, Emad M. Grais, Fei Zhao*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

15 Citations (Scopus)

Abstract

Purpose: Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods: The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results: Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion: In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.

Original languageEnglish
Pages (from-to)1097-1111
Number of pages15
JournalInternational Archives of Occupational and Environmental Health
Volume94
Issue number5
DOIs
Publication statusPublished - 25 Jan 2021

Keywords

  • Discrimination risk
  • Machine learning
  • Noise-induced hearing loss
  • Prediction models

Cite this