TY - JOUR
T1 - Clinical utility of pressure feedback to socket design and fabrication
AU - Armitage, Lucy
AU - Buller, Angela
AU - Rajan, Ginu
AU - Prusty, Gangadhara
AU - Simmons, Anne
AU - Kark, Lauren
N1 - Publisher Copyright:
© The International Society for Prosthetics and Orthotics 2019.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Background: The clinical utility of measuring pressure at the prosthetic socket-residual limb interface is currently unknown. Objectives: This study aimed to identify whether measuring interface pressure during prosthetic design and fabrication results in closer agreement in pressure measurements between sockets made by different clinicians, and a reduction in pressure over areas of concern. It also investigated whether clinicians value knowing the interface pressure during the fabrication process. Study design: Mixed methods. Methods: Three prosthetists designed a complete prosthetic system for a transtibial residual limb surrogate. Standardised mechanical testing was performed on each prosthetic system to gain pressure measurements at four key anatomical locations. These measurements were provided to the clinicians, who subsequently modified their sockets as each saw fit. The pressure at each location was re-measured. Each prosthetist completed a survey that evaluated the usefulness of knowing interface pressures during the fabrication process. Results: Feedback and subsequent socket modifications saw a reduction in the pressure measurements at three of the four anatomical locations. Furthermore, the pressure measurements between prosthetists converged. All three prosthetists found value in the pressure measurement system and felt they would use it clinically. Conclusions: Results suggest that sensors measuring pressure at the socket-limb interface has clinical utility in the context of informing prosthetic socket design and fabrication. If the technology is used at the check socket stage, iterative designs with repeated measurements can result in increased consistency between clinicians for the same residual limb, and reductions in the magnitudes of pressures over specific anatomical landmarks. Clinical relevance: This study provides new information on the value of pressure feedback to the prosthetic socket design process. It shows that with feedback, socket modifications can result in reduced limb pressures, and more consistent pressure distributions between prosthetists. It also justifies the use of pressure feedback in informing clinical decisions.
AB - Background: The clinical utility of measuring pressure at the prosthetic socket-residual limb interface is currently unknown. Objectives: This study aimed to identify whether measuring interface pressure during prosthetic design and fabrication results in closer agreement in pressure measurements between sockets made by different clinicians, and a reduction in pressure over areas of concern. It also investigated whether clinicians value knowing the interface pressure during the fabrication process. Study design: Mixed methods. Methods: Three prosthetists designed a complete prosthetic system for a transtibial residual limb surrogate. Standardised mechanical testing was performed on each prosthetic system to gain pressure measurements at four key anatomical locations. These measurements were provided to the clinicians, who subsequently modified their sockets as each saw fit. The pressure at each location was re-measured. Each prosthetist completed a survey that evaluated the usefulness of knowing interface pressures during the fabrication process. Results: Feedback and subsequent socket modifications saw a reduction in the pressure measurements at three of the four anatomical locations. Furthermore, the pressure measurements between prosthetists converged. All three prosthetists found value in the pressure measurement system and felt they would use it clinically. Conclusions: Results suggest that sensors measuring pressure at the socket-limb interface has clinical utility in the context of informing prosthetic socket design and fabrication. If the technology is used at the check socket stage, iterative designs with repeated measurements can result in increased consistency between clinicians for the same residual limb, and reductions in the magnitudes of pressures over specific anatomical landmarks. Clinical relevance: This study provides new information on the value of pressure feedback to the prosthetic socket design process. It shows that with feedback, socket modifications can result in reduced limb pressures, and more consistent pressure distributions between prosthetists. It also justifies the use of pressure feedback in informing clinical decisions.
KW - Prosthetics
KW - pressure sensing
UR - http://www.scopus.com/inward/record.url?scp=85075915846&partnerID=8YFLogxK
U2 - 10.1177/0309364619868364
DO - 10.1177/0309364619868364
M3 - Article
C2 - 31769736
AN - SCOPUS:85075915846
SN - 0309-3646
VL - 44
SP - 18
EP - 26
JO - Prosthetics and Orthotics International
JF - Prosthetics and Orthotics International
IS - 1
ER -