TY - JOUR
T1 - Cerebral blood flow in Andean children and adolescents living above 5,000 m
AU - Howe, Connor A.
AU - Verges, Samuel
AU - Nowak-Flück, Daniela
AU - Talbot, Jack S.
AU - Champigneulle, Benoit
AU - Stauffer, Emeric
AU - Brugniaux, Julien V.
AU - Doutreleau, Stéphane
AU - Hancco, Ivan
AU - Niroula, Shailesh
AU - Pichon, Aurélien
AU - McManus, Ali M.
AU - Stembridge, Michael
AU - Ainslie, Philip N.
N1 - Publisher Copyright:
Copyright © 2025 The Authors.
PY - 2025/3/6
Y1 - 2025/3/6
N2 - A number of indigenous populations have resided at high-altitude for generations, resulting in various phenotypical adaptations promoting successful high-altitude adaptation. Although many of these adaptations have been investigated in adults, little is known regarding how children residing at high-altitudes adapt, particularly with regards to the cerebrovasculature. Under hypoxic environments, compensatory changes in cerebral blood flow (CBF) are necessary to couple oxygen delivery to metabolic demand in the face of reduced oxygen availability. In this study, we aimed to evaluate regional and global cerebral blood flow (CBF) in Andean children and adolescents living in the highest city in the world at 5,100 m. Eighteen Andeans (ages 6–17 yr) living in La Rinconada, Peru (5,100 m) were compared with sex-, age-, size-, and maturity-matched high-altitude Sherpa (3,800 m) living in the Khumbu valley of Nepal (n = 18) and lowlanders (44 m) living at sea-level in Cardiff, Wales (n = 18). Volumetric measurements of CBF were assessed using duplex ultrasound of the internal carotid and vertebral arteries to assess regional and global CBF. End-tidal gases and oxygen saturation were measured in all groups, while hemoglobin concentration was assessed in Andeans. Despite Andeans living under a more severe hypoxic environment, global CBF was similar between Andeans (687.01 ± 138.49 mL/min), Sherpa (711.27 ± 110.27 mL/min), and lowlanders (704.88 ± 59.23 mL/min). In contrast, vertebral artery blood flow was 24% lower in Andeans (72.93 ± 31.60 mL/min) compared with lowlanders (96.09 ± 19.23 mL/min). The similar global CBF in Andean children might be achieved through elevated hemoglobin concentration. However, lower posterior perfusion in Andeans requires further investigation to determine whether it represents an adaptive or maladaptive response. NEW & NOTEWORTHY We have, for the first time, quantified volumetric regional and global cerebral blood flow in indigenous Andean children and adolescents living above 5,000 m in the highest city in the world. Compared with Sherpa living at moderate altitude (3,800 m), and lowlanders residing at sea level, Andeans present with similar global cerebral blood flow, but lower posterior flow despite being more hypoxemic. Similar to adults, differences in high hemoglobin concentration may drive this pattern of cerebral blood flow.
AB - A number of indigenous populations have resided at high-altitude for generations, resulting in various phenotypical adaptations promoting successful high-altitude adaptation. Although many of these adaptations have been investigated in adults, little is known regarding how children residing at high-altitudes adapt, particularly with regards to the cerebrovasculature. Under hypoxic environments, compensatory changes in cerebral blood flow (CBF) are necessary to couple oxygen delivery to metabolic demand in the face of reduced oxygen availability. In this study, we aimed to evaluate regional and global cerebral blood flow (CBF) in Andean children and adolescents living in the highest city in the world at 5,100 m. Eighteen Andeans (ages 6–17 yr) living in La Rinconada, Peru (5,100 m) were compared with sex-, age-, size-, and maturity-matched high-altitude Sherpa (3,800 m) living in the Khumbu valley of Nepal (n = 18) and lowlanders (44 m) living at sea-level in Cardiff, Wales (n = 18). Volumetric measurements of CBF were assessed using duplex ultrasound of the internal carotid and vertebral arteries to assess regional and global CBF. End-tidal gases and oxygen saturation were measured in all groups, while hemoglobin concentration was assessed in Andeans. Despite Andeans living under a more severe hypoxic environment, global CBF was similar between Andeans (687.01 ± 138.49 mL/min), Sherpa (711.27 ± 110.27 mL/min), and lowlanders (704.88 ± 59.23 mL/min). In contrast, vertebral artery blood flow was 24% lower in Andeans (72.93 ± 31.60 mL/min) compared with lowlanders (96.09 ± 19.23 mL/min). The similar global CBF in Andean children might be achieved through elevated hemoglobin concentration. However, lower posterior perfusion in Andeans requires further investigation to determine whether it represents an adaptive or maladaptive response. NEW & NOTEWORTHY We have, for the first time, quantified volumetric regional and global cerebral blood flow in indigenous Andean children and adolescents living above 5,000 m in the highest city in the world. Compared with Sherpa living at moderate altitude (3,800 m), and lowlanders residing at sea level, Andeans present with similar global cerebral blood flow, but lower posterior flow despite being more hypoxemic. Similar to adults, differences in high hemoglobin concentration may drive this pattern of cerebral blood flow.
KW - cerebral blood flow
KW - children
KW - high-altitude
KW - physiology
KW - ultrasound
UR - https://www.scopus.com/pages/publications/105002376293
U2 - 10.1152/jn.00513.2024
DO - 10.1152/jn.00513.2024
M3 - Article
C2 - 40049741
SN - 0022-3077
VL - 133
SP - 1138
EP - 1145
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 4
ER -