TY - GEN
T1 - Big data security analysis approach using Computational Intelligence techniques in R for desktop users
AU - Naik, Nitin
AU - Jenkins, Paul
AU - Savage, Nick
AU - Katos, Vasilios
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2017/2/13
Y1 - 2017/2/13
N2 - Big Data security analysis is commonly used for the analysis of large volume security data from an organisational perspective, requiring powerful IT infrastructure and expensive data analysis tools. Therefore, it can be considered to be inaccessible to the vast majority of desktop users and is difficult to apply to their rapidly growing data sets for security analysis. A number of commercial companies offer a desktop-oriented big data security analysis solution; however, most of them are prohibitive to ordinary desktop users with respect to cost and IT processing power. This paper presents an intuitive and inexpensive big data security analysis approach using Computational Intelligence (CI) techniques for Windows desktop users, where the combination of Windows batch programming, EmEditor and R are used for the security analysis. The simulation is performed on a real dataset with more than 10 million observations, which are collected from Windows Firewall logs to demonstrate how a desktop user can gain insight into their abundant and untouched data and extract useful information to prevent their system from current and future security threats. This CI-based big data security analysis approach can also be extended to other types of security logs such as event logs, application logs and web logs.
AB - Big Data security analysis is commonly used for the analysis of large volume security data from an organisational perspective, requiring powerful IT infrastructure and expensive data analysis tools. Therefore, it can be considered to be inaccessible to the vast majority of desktop users and is difficult to apply to their rapidly growing data sets for security analysis. A number of commercial companies offer a desktop-oriented big data security analysis solution; however, most of them are prohibitive to ordinary desktop users with respect to cost and IT processing power. This paper presents an intuitive and inexpensive big data security analysis approach using Computational Intelligence (CI) techniques for Windows desktop users, where the combination of Windows batch programming, EmEditor and R are used for the security analysis. The simulation is performed on a real dataset with more than 10 million observations, which are collected from Windows Firewall logs to demonstrate how a desktop user can gain insight into their abundant and untouched data and extract useful information to prevent their system from current and future security threats. This CI-based big data security analysis approach can also be extended to other types of security logs such as event logs, application logs and web logs.
KW - Big Data
KW - CI
KW - Computational Intelligence Techniques
KW - Desktop User
KW - R
KW - Security Analysis
KW - Windows Firewall Logs
UR - http://www.scopus.com/inward/record.url?scp=85015979688&partnerID=8YFLogxK
U2 - 10.1109/SSCI.2016.7849907
DO - 10.1109/SSCI.2016.7849907
M3 - Conference contribution
AN - SCOPUS:85015979688
T3 - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
BT - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
Y2 - 6 December 2016 through 9 December 2016
ER -