TY - JOUR
T1 - Adaptive Sleep Efficient Hybrid Medium Access Control algorithm for next-generation wireless sensor networks
AU - Bakhsh, Sheikh Tahir
AU - AlGhamdi, Rayed
AU - Altalhi, Abdulrahman H.
AU - Tahir, Sabeen
AU - Sheikh, Muhammad Aman
N1 - Publisher Copyright:
© 2017, The Author(s).
PY - 2017/5/8
Y1 - 2017/5/8
N2 - The scheduling algorithm is a fundamental design problem to allocate resources amongst different entities in distributive wireless sensor networks (WSNs). These sensor nodes have limited power and non-replenishable energy resources. In WSNs, the duty cycling mechanism is commonly used to save energy due to idle listening. On the other hand, a fixed duty cycling mechanism increases transmission latency in WSNs. Therefore, in order to ensure the prolonged network-life of WSNs, the medium access control (MAC) protocol should be tackled in an efficient manner to improve energy efficiency by minimizing idle listening, maximizing sleep duration, and eliminating data collision. This paper proposes a practical Adaptive Sleep Efficient Hybrid Medium Access Control (AEH-MAC) algorithm in which the key idea is to dynamically adjust nodes’ sleep time to improve the scheduling in WSNs. The AEH-MAC allows nodes to adjust sleep time dynamically according to the traffic load and coordinate wakeup time with neighbour nodes. A series of short taken packets are transmitted to wake the receiver, and a prediction field is introduced in the ACK packets (GRANT/RELEASE) to reduce the waiting time of the source node. In the proposed algorithm, each node maps a conflict-free time slot for itself up to two-hop neighbouring nodes. The simulation results show that the AEH-MAC algorithm achieves high performance in terms of runtime, number of rounds, energy consumption, and slot reservation.
AB - The scheduling algorithm is a fundamental design problem to allocate resources amongst different entities in distributive wireless sensor networks (WSNs). These sensor nodes have limited power and non-replenishable energy resources. In WSNs, the duty cycling mechanism is commonly used to save energy due to idle listening. On the other hand, a fixed duty cycling mechanism increases transmission latency in WSNs. Therefore, in order to ensure the prolonged network-life of WSNs, the medium access control (MAC) protocol should be tackled in an efficient manner to improve energy efficiency by minimizing idle listening, maximizing sleep duration, and eliminating data collision. This paper proposes a practical Adaptive Sleep Efficient Hybrid Medium Access Control (AEH-MAC) algorithm in which the key idea is to dynamically adjust nodes’ sleep time to improve the scheduling in WSNs. The AEH-MAC allows nodes to adjust sleep time dynamically according to the traffic load and coordinate wakeup time with neighbour nodes. A series of short taken packets are transmitted to wake the receiver, and a prediction field is introduced in the ACK packets (GRANT/RELEASE) to reduce the waiting time of the source node. In the proposed algorithm, each node maps a conflict-free time slot for itself up to two-hop neighbouring nodes. The simulation results show that the AEH-MAC algorithm achieves high performance in terms of runtime, number of rounds, energy consumption, and slot reservation.
KW - Ad hoc networks
KW - Dnyamic
KW - Network performance
KW - Synchronization
UR - http://www.scopus.com/inward/record.url?scp=85019063704&partnerID=8YFLogxK
U2 - 10.1186/s13638-017-0870-y
DO - 10.1186/s13638-017-0870-y
M3 - Article
AN - SCOPUS:85019063704
SN - 1687-1472
VL - 2017
JO - Eurasip Journal on Wireless Communications and Networking
JF - Eurasip Journal on Wireless Communications and Networking
IS - 1
M1 - 84
ER -