Using Word2Vec Recommendation for Improved Purchase Prediction

Ramazan Esmeli, Mohamed Bader-El-Den, Hassana Abdullahi

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

21 Dyfyniadau (Scopus)

Crynodeb

Purchase prediction can help e-commerce planners plan their stock and personalised offers. Word2Vec is a well-known method to explore word relations in sentences for sentiment analysing by creating vector representation of words. Word2Vec models are used in many works for product recommendations. In this paper, we analyse the effect of item similarities in the sessions in purchase prediction performance. We choose the items from different position of the session, and we derive recommendations from selected items using Word2Vec model. We assess the similarities between items by analysing the number of common recommendations of selected items. We train classification algorithms after we include similarity calculations of the selected items as session features. Computational experiments show that using similarity values of the interacted items in the session improves the performance of purchase prediction in terms of F1 score.

Iaith wreiddiolSaesneg
Teitl2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
CyhoeddwrInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronig)9781728169262
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 28 Medi 2020
Cyhoeddwyd yn allanolIe
Digwyddiad2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, Y Deyrnas Unedig
Hyd: 19 Gorff 202024 Gorff 2020

Cyfres gyhoeddiadau

EnwProceedings of the International Joint Conference on Neural Networks

Cynhadledd

Cynhadledd2020 International Joint Conference on Neural Networks, IJCNN 2020
Gwlad/TiriogaethY Deyrnas Unedig
DinasVirtual, Glasgow
Cyfnod19/07/2024/07/20

Dyfynnu hyn