Predicting obesity using longitudinal near infra-red spectroscopy (NIRS) data

Ahsan Abdullah, Amir Hussain, Imtiaz Hussain Khan

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

Crynodeb

Globally there has been a dramatic increase in obesity [1]. Thus understanding, predicting and managing obesity has the potential to save lives and billions. Behavioral studies suggest that binging by obese persons is prompted by inflated brain reward center activity to stimuli linked with high-calorie foods [2], but there are hardly any data-analytic calorie-based cognitive studies using non-invasive Near-Infrared Spectroscopy (NIRS) data that predict obesity using predictive data mining. In this paper, details of a novel research methodology are presented for a 24-month longitudinal NIRS study in natural subject environments. The proposed methodology is based on brain reward center activation mapping, simulated results of Naïve Bayes modeling using these activation maps demonstrate how cerebral functional activity data can be used to predict obesity in the non-obese.

Iaith wreiddiolSaesneg
TeitlProceedings of 2017 International Conference on Compute and Data Analysis, ICCDA 2017
CyhoeddwrAssociation for Computing Machinery
Tudalennau123-128
Nifer y tudalennau6
ISBN (Electronig)9781450352413
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 19 Mai 2017
Cyhoeddwyd yn allanolIe
Digwyddiad2017 International Conference on Compute and Data Analysis, ICCDA 2017 - Lakeland, Yr Unol Daleithiau
Hyd: 19 Mai 201723 Mai 2017

Cyfres gyhoeddiadau

EnwACM International Conference Proceeding Series
CyfrolPart F130280

Cynhadledd

Cynhadledd2017 International Conference on Compute and Data Analysis, ICCDA 2017
Gwlad/TiriogaethYr Unol Daleithiau
DinasLakeland
Cyfnod19/05/1723/05/17

Dyfynnu hyn