TY - JOUR
T1 - Generative artificial intelligence
T2 - a systematic review and applications
AU - Sengar, Sandeep Singh
AU - Hasan, Affan Bin
AU - Kumar, Sanjay
AU - Carroll, Fiona
N1 - Publisher Copyright:
© Crown 2024.
PY - 2024/8/14
Y1 - 2024/8/14
N2 - In recent years, the study of artificial intelligence (AI) has undergone a paradigm shift. This has been propelled by the groundbreaking capabilities of generative models both in supervised and unsupervised learning scenarios. Generative AI has shown state-of-the-art performance in solving perplexing real-world conundrums in fields such as image translation, medical diagnostics, textual imagery fusion, natural language processing, and beyond. This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI with a detailed discussion of their applications including application-specific models. Indeed, the major impact that generative AI has made to date, has been in language generation with the development of large language models, in the field of image translation and several other interdisciplinary applications of generative AI. Moreover, the primary contribution of this paper lies in its coherent synthesis of the latest advancements in these areas, seamlessly weaving together contemporary breakthroughs in the field. Particularly, how it shares an exploration of the future trajectory for generative AI. In conclusion, the paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
AB - In recent years, the study of artificial intelligence (AI) has undergone a paradigm shift. This has been propelled by the groundbreaking capabilities of generative models both in supervised and unsupervised learning scenarios. Generative AI has shown state-of-the-art performance in solving perplexing real-world conundrums in fields such as image translation, medical diagnostics, textual imagery fusion, natural language processing, and beyond. This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI with a detailed discussion of their applications including application-specific models. Indeed, the major impact that generative AI has made to date, has been in language generation with the development of large language models, in the field of image translation and several other interdisciplinary applications of generative AI. Moreover, the primary contribution of this paper lies in its coherent synthesis of the latest advancements in these areas, seamlessly weaving together contemporary breakthroughs in the field. Particularly, how it shares an exploration of the future trajectory for generative AI. In conclusion, the paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
KW - Diffusion
KW - Generative adversarial networks
KW - Generative artificial intelligence
KW - Segmentation
KW - Transformers
KW - Variational autoencoder
UR - http://www.scopus.com/inward/record.url?scp=85201202967&partnerID=8YFLogxK
U2 - 10.1007/s11042-024-20016-1
DO - 10.1007/s11042-024-20016-1
M3 - Article
AN - SCOPUS:85201202967
SN - 1380-7501
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
ER -