Extremely Random Forest based Automatic Tonic-Clonic Seizure Detection using Spectral Analysis on Electroencephalography Data

Craig Stewart*, Wai Keung Fung, Nazila Fough, Radhakrishna Prabhu

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

Crynodeb

Machine learning proliferates society and has begun changing medicine. This report covers an investigation into how Extremely Random Forests combined with Fast Fourier Transform feature extraction performed on two-dimensional time-series Epileptic Seizure data from the Bonn/UCI dataset. It found that robust classification can take place with lower channel counts, achieving 99.81% recall, 98.8% precision and 99.35% accuracy, outperforming previous works carried into this scenario.

Iaith wreiddiolSaesneg
Teitl21st IEEE Interregional NEWCAS Conference, NEWCAS 2023 - Proceedings
CyhoeddwrInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronig)9798350300246
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 7 Awst 2023
Digwyddiad21st IEEE Interregional NEWCAS Conference, NEWCAS 2023 - Edinburgh, Y Deyrnas Unedig
Hyd: 26 Meh 202328 Meh 2023

Cyfres gyhoeddiadau

Enw21st IEEE Interregional NEWCAS Conference, NEWCAS 2023 - Proceedings

Cynhadledd

Cynhadledd21st IEEE Interregional NEWCAS Conference, NEWCAS 2023
Gwlad/TiriogaethY Deyrnas Unedig
DinasEdinburgh
Cyfnod26/06/2328/06/23

Dyfynnu hyn