TY - JOUR
T1 - Estimating compressive strength of lightweight foamed concrete using neural, genetic and ensemble machine learning approaches
AU - Salami, Babatunde Abiodun
AU - Iqbal, Mudassir
AU - Abdulraheem, Abdulazeez
AU - Jalal, Fazal E.
AU - Alimi, Wasiu
AU - Jamal, Arshad
AU - Tafsirojjaman, T.
AU - Liu, Yue
AU - Bardhan, Abidhan
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/8/26
Y1 - 2022/8/26
N2 - Foamed concrete is special not only in terms of its unique properties, but also in terms of its challenging compositional mixture design, which necessitates multiple experimental trials before obtaining the desired property like compressive strength. Regardless of design challenges, artificial intelligence (AI) techniques have shown to be useful in reliably estimating desired concrete properties based on optimized mixture proportions. This study proposes AI-based models to predict the compressive strength of foamed concrete. Three novel AI approaches, namely artificial neural network (ANN), gene expression programming (GEP), and gradient boosting tree (GBT) models, were employed. The models were developed using 232 experimental results, considering easily acquired variables, such as the density of concrete, water-cement ratio and sand-cement ratio as inputs to estimate the compressive strength of foamed concrete. In training the models, 80% of the experimental data was used and the rest was used to validate the models. The optimized models were selected using their respective best hyper-parameters on trial and error basis; variable number of hidden layers, number of neurons and training algorithms were used for ANN, number of chromosomes, head size, number of genes, variable function set for the GEP and GBT employed number of trees, maximal depth and learning rate. The trained models were validated using parametric and sensitivity analyses of a simulated dataset. The prediction abilities of proposed models were evaluated using the coefficient of correlation (R), mean absolute error (MAE), and root mean squared error (RMSE). For the validation data, empirical results from the performance evaluation revealed that GBT model (R = 0.977, MAE = 1.817 and RMSE = 2.69) has relative superior performance with highest correlation and least error in comparison with ANN (R = 0.975, MAE = 2.695 and RMSE = 3.40) and GEP (R = 0.96, MAE = 2.07 and RMSE = 2.80). The study concludes that the developed GBT model offered reliable accuracy in predicting the compressive strength of foamed concrete. Finally, the simple prediction equation generated from the GEP model signifies its importance and can reliably be used in estimating compressive strength of foamed concrete. It is recommended that the prediction models shall be used for the ranges of input variables employed in this study.
AB - Foamed concrete is special not only in terms of its unique properties, but also in terms of its challenging compositional mixture design, which necessitates multiple experimental trials before obtaining the desired property like compressive strength. Regardless of design challenges, artificial intelligence (AI) techniques have shown to be useful in reliably estimating desired concrete properties based on optimized mixture proportions. This study proposes AI-based models to predict the compressive strength of foamed concrete. Three novel AI approaches, namely artificial neural network (ANN), gene expression programming (GEP), and gradient boosting tree (GBT) models, were employed. The models were developed using 232 experimental results, considering easily acquired variables, such as the density of concrete, water-cement ratio and sand-cement ratio as inputs to estimate the compressive strength of foamed concrete. In training the models, 80% of the experimental data was used and the rest was used to validate the models. The optimized models were selected using their respective best hyper-parameters on trial and error basis; variable number of hidden layers, number of neurons and training algorithms were used for ANN, number of chromosomes, head size, number of genes, variable function set for the GEP and GBT employed number of trees, maximal depth and learning rate. The trained models were validated using parametric and sensitivity analyses of a simulated dataset. The prediction abilities of proposed models were evaluated using the coefficient of correlation (R), mean absolute error (MAE), and root mean squared error (RMSE). For the validation data, empirical results from the performance evaluation revealed that GBT model (R = 0.977, MAE = 1.817 and RMSE = 2.69) has relative superior performance with highest correlation and least error in comparison with ANN (R = 0.975, MAE = 2.695 and RMSE = 3.40) and GEP (R = 0.96, MAE = 2.07 and RMSE = 2.80). The study concludes that the developed GBT model offered reliable accuracy in predicting the compressive strength of foamed concrete. Finally, the simple prediction equation generated from the GEP model signifies its importance and can reliably be used in estimating compressive strength of foamed concrete. It is recommended that the prediction models shall be used for the ranges of input variables employed in this study.
KW - Artificial neural network
KW - Foamed concrete
KW - Gene expression programming
KW - Gradient boosting tree
KW - Lightweight concrete
KW - Optimization
UR - http://www.scopus.com/inward/record.url?scp=85136526348&partnerID=8YFLogxK
U2 - 10.1016/j.cemconcomp.2022.104721
DO - 10.1016/j.cemconcomp.2022.104721
M3 - Article
AN - SCOPUS:85136526348
SN - 0958-9465
VL - 133
JO - Cement and Concrete Composites
JF - Cement and Concrete Composites
M1 - 104721
ER -