Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis

Nitin Naik, Paul Jenkins, Nick Savage, Longzhi Yang, Kshirasagar Naik, Jingping Song

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

11 Dyfyniadau (Scopus)

Crynodeb

YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.

Iaith wreiddiolSaesneg
Teitl2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020 - Proceedings
CyhoeddwrInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronig)9781728169323
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 26 Awst 2020
Cyhoeddwyd yn allanolIe
Digwyddiad2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020 - Glasgow, Y Deyrnas Unedig
Hyd: 19 Gorff 202024 Gorff 2020

Cyfres gyhoeddiadau

EnwIEEE International Conference on Fuzzy Systems
Cyfrol2020-July
ISSN (Argraffiad)1098-7584

Cynhadledd

Cynhadledd2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020
Gwlad/TiriogaethY Deyrnas Unedig
DinasGlasgow
Cyfnod19/07/2024/07/20

Dyfynnu hyn