Crynodeb
Background
The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID.
Methods
Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student’s unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason’s correlation coefficient was used to examine relationships between variables.
Results
During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (−0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (−0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = −0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity.
Conclusions
The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID.
Methods
Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student’s unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason’s correlation coefficient was used to examine relationships between variables.
Results
During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (−0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (−0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = −0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity.
Conclusions
The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
Iaith wreiddiol | Saesneg |
---|---|
Rhif yr erthygl | 20 |
Cyfnodolyn | Communications Medicine |
Cyfrol | 4 |
Rhif cyhoeddi | 1 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 19 Chwef 2024 |