An experimental study for Arabic text classification techniques

Bassam Al-Shargabi*, Fekry Olayah

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

Crynodeb

Several algorithms have been implemented to resolve the problem of text categorization. Most of the work in this area geared for English text, whereas few researches have been conducted on Arabic text. However, the nature of Arabic text is different than English text; pre-processing of Arabic text are more challenging. In this paper an experimental study was conducted on three techniques for Arabic text classification; these techniques, Discriminative Multinominal Naive Bayes (DMNB), Naïve Bayesian (NB) and IBK Algorithms, The paper aimed to assess the accuracy for each classifier and to determine which classifier is more accurate for Arabic text classification based on stop words elimination. The accuracy for each classifier is measured by Percentage split method (holdout), and K-fold cross validation methods, along with the time needed to classify Arabic text.

Iaith wreiddiolSaesneg
TeitlFourth International Conference on Digital Image Processing, ICDIP 2012
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2 Meh 2012
Cyhoeddwyd yn allanolIe
Digwyddiad4th International Conference on Digital Image Processing, ICDIP 2012 - Kuala Lumpur, Malaisia
Hyd: 7 Ebr 20128 Ebr 2012

Cyfres gyhoeddiadau

EnwProceedings of SPIE - The International Society for Optical Engineering
Cyfrol8334
ISSN (Argraffiad)0277-786X

Cynhadledd

Cynhadledd4th International Conference on Digital Image Processing, ICDIP 2012
Gwlad/TiriogaethMalaisia
DinasKuala Lumpur
Cyfnod7/04/128/04/12

Dyfynnu hyn