Aggregated Deep Convolutional Neural Networks for Multi-View 3D Object Retrieval

Ahmad Alzu'bi, Abdelrahman Abuarqoub, Ahmed Al-Hmouz

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad mewn cynhadleddadolygiad gan gymheiriaid

2 Dyfyniadau (Scopus)

Crynodeb

Extracting and aggregating discriminative image features is a key challenge for 3D multi-view object recognition and retrieval tasks. In this paper, we propose aggregated deep CNNs (ADCNN) model to address the limitations associated with projecting 3D models into multiple 2D images and their resulting high-dimensional representations. A deep learning network is developed to aggregate compact features of 3D objects using the activation kernels of convolutional layers directly. Two instances of the same CNN features extractor share the learning weights while they represent different object characteristics. Systematic experiments conducted on the benchmark dataset ModelNet40 demonstrate the efficacy of the proposed method in 3D object retrieval and a m AP accuracy of 91.1% is achieved, which shows its performance superiority over related state-of-the-art methods.

Iaith wreiddiolSaesneg
Teitl11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2019
CyhoeddwrIEEE Computer Society
ISBN (Electronig)9781728157634
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 30 Hyd 2019
Cyhoeddwyd yn allanolIe
Digwyddiad11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2019 - Dublin, Iwerddon
Hyd: 28 Hyd 201930 Hyd 2019

Cyfres gyhoeddiadau

EnwInternational Congress on Ultra Modern Telecommunications and Control Systems and Workshops
Cyfrol2019-October
ISSN (Argraffiad)2157-0221
ISSN (Electronig)2157-023X

Cynhadledd

Cynhadledd11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2019
Gwlad/TiriogaethIwerddon
DinasDublin
Cyfnod28/10/1930/10/19

Dyfynnu hyn