TY - JOUR
T1 - A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities
AU - Pogson, Mark
AU - Verheul, Jasper
AU - Robinson, Mark A.
AU - Vanrenterghem, Jos
AU - Lisboa, Paulo
N1 - Publisher Copyright:
© 2020
PY - 2020/3/19
Y1 - 2020/3/19
N2 - Prediction of ground reaction force (GRF) magnitudes during running-based sports has several important applications, including optimal load prescription and injury prevention in athletes. Existing methods typically require information from multiple body-worn sensors, limiting their ecological validity, or aim to estimate discrete force parameters, limiting their ability to assess overall biomechanical load. This paper presents a neural network method to predict GRF time series from a single, commonly used, trunk-mounted accelerometer. The presented method uses a principal component analysis and multilayer perceptron (MLP) to obtain predictions. Time-series r2 coefficients with test data averaged around 0.9 for each impact, comparing favourably with alternative approaches which require additional sensors. For the impact peak, r2 was 0.74 across activities, comparing favourably with correlation analysis approaches. Several modifications, such as subject-specific training of the MLP, may help to improve results further, but the presented method can accurately predict GRF from trunk accelerometry data without requiring additional information. Results demonstrate the scope of machine learning to exploit common wearable technologies to estimate GRF in sport-specific environments.
AB - Prediction of ground reaction force (GRF) magnitudes during running-based sports has several important applications, including optimal load prescription and injury prevention in athletes. Existing methods typically require information from multiple body-worn sensors, limiting their ecological validity, or aim to estimate discrete force parameters, limiting their ability to assess overall biomechanical load. This paper presents a neural network method to predict GRF time series from a single, commonly used, trunk-mounted accelerometer. The presented method uses a principal component analysis and multilayer perceptron (MLP) to obtain predictions. Time-series r2 coefficients with test data averaged around 0.9 for each impact, comparing favourably with alternative approaches which require additional sensors. For the impact peak, r2 was 0.74 across activities, comparing favourably with correlation analysis approaches. Several modifications, such as subject-specific training of the MLP, may help to improve results further, but the presented method can accurately predict GRF from trunk accelerometry data without requiring additional information. Results demonstrate the scope of machine learning to exploit common wearable technologies to estimate GRF in sport-specific environments.
KW - Biomechanical load
KW - Ground reaction force
KW - Multilayer perceptron
KW - Trunk accelerometry
UR - http://www.scopus.com/inward/record.url?scp=85080091362&partnerID=8YFLogxK
U2 - 10.1016/j.medengphy.2020.02.002
DO - 10.1016/j.medengphy.2020.02.002
M3 - Article
C2 - 32115354
AN - SCOPUS:85080091362
SN - 1350-4533
VL - 78
SP - 82
EP - 89
JO - Medical Engineering and Physics
JF - Medical Engineering and Physics
ER -